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1. INTRODUCTION

The search for models useful in describing and predicting the
break-up of shaped-charge jets has proceeded along several lines.
The problem of mass flow in jets can be treated in a continuum mechanics
fashion by formulating a set of difference equations which can be solved
in a reasonable time by a large computer. When spatially periodic
perturbations are introduced into the boundaries of the jet, they are
found to grow if they are of the right size. 1 Another approach'is to
make experimental observations and attempt to use similarity methods 2

and empirical curve fitting to extrapolate from the measured to the
unknown. A third approach, and the one to be followed in this study,
is to use basic mechanics and simple probability theory to treat the
jet as a collection of stretching links. All of these approaches are
tied to material properties which are reasonable in concept but dif-
ficult to measure during the formation and break-up of the jet

It has been observed that high speed jets, created by the detonation
of shaped explosive charges with conical copper liners, tend to break
up into small particles of various sizes after about 10-4 seconds.
Continuous jets with all parts traveling along the same straight line
are known to have better penetration capabilities than jets which are
broken or dispersed, and there is considerable interest in discovering
and controlling those physical parameters which influence the pattern
of jet break-up. The purpose of this report is to combine a number of
observations with some simple theory and to arrive at a model which
contains the pertinent physical parameters and predicts the pattern
of the break-up of shaped charge jets.

2. SIMPLE DESCRIPTION OF A JET

By examining consecutive x--ray flash photographs of a jet, it is
possible to determine its mass distribution in space and time and to
describe it rather simply at a given time as shown in Table I, which
will be the basis for the following analysis. Jet properties will of
course vary with the design of the shaped charge. The values listed
in Table I were obtained by a crude averaging of data from firings 3

of precision 3.3 inch (8.4 cm) shaped charges with copper liners,
,ind are thought to be representative. Because copper is the metal

P.C. Chou and J. Carleone, Stability of Shaped Charge Jets, Journal
W Appi~ed Physics, Vol. 48, No. 10, pg. 4187, October 1977

W. F. Baker, P. Westine and 1. T. Dodge, Similarity Methods in
i~g iier rig [Dynamrics, Ilayden Book Co., Inc., Rochelle Park, NJ,

J)H" 1901, 1973

.J. S mlii amid R. I)i Pres io, Shaped Charge Warhead Performance, Transac-
ei,, , t. If S.t "yr1()siuim on Wa rhead Research, US Navwal Oidnance Testing

(iiill, C L ike, CA, Sefpt. 1965
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most often used in liners for shaped charges, some properties of copper
are listed in Table II.

Table I. Nominal Properties of a Copper Jet L0"4 Seconds
After Shaped Charge Initiation

Velocity of Tip 7.5 km/sec

Length (V.;2.S km/sec) 50 cm

Diameter 3 mm

Break-up Time 100 P/sec

Number of Particles 50

Mass in Jet 32 gms

Table II. Nominal Properties of Copper

Density 8.93 gm/cm3

Sound Velocity 3750 m/sec

Thermal Conductivity 3.94 w/cmQC

Heat of Fusion 207 j/gm

Heat of Vaporization 4.730 j/gm

Specific Heat 0.38 j/gm°C

Atomic Weight 63.54/mol

Melting Point 10830C

Boiling Point 2595SC

Strength 2X10 8 newtons/mr2

For purposes of discussion we will assume, as depicted in Figure
1, that the shaped charge produces at the virtual origin a copper jet
which expands uniformly in time so that it can be viewed as a stretching
right circular cylinder of constant mass and density. The length L
of the jet at time. t is given by the equation,

L ut 5.0 X 103 t (2.1)

where U is a stretching speed of 5.0 km/sec, the difference in speed

between the tip and the tail of the jet. If the jet has a diameter D

.1 8

-Z-' "M



Ii

VIRTUAL
ORIGIN

2.5 km/s C.M. 75km/s

-25 c - L 50 cm I

I'I

Figure 1. A depiction of the jet resulting from a copper-lined
"shaped charge. If we assume that the jet started from
"the virtual origin at time zero, it is lOOmicroseconds
old. The speed of stretching if is 5.0 km/sec and theSi"• str in sis 14 se-1 .
velocity gradient, or strain rate, Us/L, is 10 sec
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of 3 mm when it is 50 cm long at 100 u/sec and if copper has a density
3of 8.93 gm/cm , the mass of the jet is given by the equation,

M = 7D Lp/4 = 31.56 gm. (2.2)

The motion of the jet can be described in terms of the motion of the
center of mass and the motion relative to the center of mass by theequat ion,1

U(X) = Uc + (X/L) Us - L/2<X<L/2 (2.3)

where U(X) is the speed of a mass point located by the coordinate X
measured from the center of mass, U c is the speed of the center of
mass, L is the length of the jet at time t, and U1 is the difference

in speed between the jet tip and tail.

Combining Equations 2.1 and 2.3 yields the result,

U(Xt) = c + (X/t), -Usl/2X/tl<s/2, (2.4)

where, for our particular jet, both Uc and U s are 5 km/sec.c!

3. ENERGY DISTRIBUTION IN THE JET

It is evident that Equatior 2.4 can hold only if the stretching of
the jet requires no expenditur, -,C ,riergy. The energy of the jet may
be divided into two parts, the mne,:gy associated with the motion of

! the center of mass and the energy associated with motion relative to

the center of mass, and may be written as

X=L/2
2 2

2 = c1 2 + (1/2) Pu2 (X)dX (3.1)

w it s uX=-L/2

Swhere u is the mass per unit length in the jet and 'a(X) is defined
from Equation 2.3 by the equation,

u (X) 1(X) -U = (x/L)U (3.2)

After integration between limits Equation 3.1 becomes

13



E - MU /2 + M•U/24 (3.3)

where we have replaced p by M/L. Since U and U are both equal to
S

5.0 km/sec for our situation, we see that only about 1/13 or 8% of
the energy is associated with the stretching motion, and it is this
energy which is depleted as work is done in stretching.

Suppose that a uniform jet is divided into n equal segments with
the velocity distribution of the Kth segment relative to the laboratory
system being given by the equation,

U(X) U c+ (X/L)U s, A-X4B, (3.4)

where

A (-L/2) + (K-l) (L/n), (3.S)

and
B - (-L/2) + K(L/n). 

(3.6)

With these definitions, the location and speed of the center of mass
of the Kth particle are given by the equations,

X = -L/2 + (K-½) (L/n) = (A+B)/2, (3.7)
K

and

UK = Uc + [-½ + (K -)/n s U(XK). (.3.8)

The velocity distribution in each segment relative to its center of
mass can be written as

U-(X'/L) - (X-/L) Us, -L/2n<X'<L/2n (3.9)

so that the relative kinetic energy can be w.'itten as

X=L/2n.2~E 2 2dX(.i0

=M/2L) (X'/L)2 U 2 dX (3.10)'KXý=ý-L/2n

* iL/2n

= (M/2L) (Us/L)'[X-'/3] (3.11)
:2 3

I-L/2n

.MU /24 n (3.12)

•maim=



From Equatil,, 3.8, the kineti- energy of the Kth particle, less its
internal ,nergy relative to its center of mass, can be written as

2F (M/2n) (3

2

S(I/2n) {uW + [-½ + (h-')/n]U5 ) (3.14)

Jsing Equationis 3.12 and 3.13 the total kinetic energy of the jet
can be written as

K=n K=n
E Y , EK + E Eý (3.15)

K=l K=I

Kun K =n
=- • (M/2n) U + [- s + E+ MUs/24n (3.16)

K=l K - I

Using the identities,

K=n
a na, a any constant, (3.17)

K-=n
FK n (n11

K=l

K=n 2
K= (1/6)(n)(n+l)(2n+l), (3.19)

K-I

Equation 3.16 can be simplified to the form,

E :MU 2/2 + (M/24)Us[2. (1/n2) ]+ (M/24)U 2/n2 (3.20)
c

2 2 2)MU /2 + (M/24)UJ. 3.21)C °

I
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Since n segments contribute to the last term of Equation 3.21, tne
contribution of each segment to the term is

E = (1/n) (M/24) 2U /n 2 (M/24)UI/n3, (3.22)

in agreement with Equation 3.12. Equation 3.20 states that the n seg-
ments contribute to the total energy by three terms. The first term is
associated with the motion of the mass M at speed Uc. The second term

arises from the motions of the centers of mass of the several segments
relative to the center of mass of the jet. The last term arises from
the internal motion of each segment relative to its center of mass,
The total energy of the jet is of course independent of the manner
of its division, as illustrated by Equations 3.20 and 3.21. These
equations can be written in terms of energy per unit mass as

ElM = 2 4-(/24)U Srl(/n 2] + (1/24)US'/2 (3.23)

and

2 2E/M = U /2 + (1/24)U5 . (3.24) )
The above calculations illustrate that, with a given stretching

speed, the energy available to stretch an isolated segment of jet,
after a partial break-up has occurred, varies strongly with length.
It should be stated further that, if a jet in the process of
stretching suddenly breaks into n pieces, the total kinetic energy is
still the same, but the energy available per unit mass to stretch the
jet (or its several pieces) has fallen from U /24 to U /24n as

indicated by Equations 3.23 and 3.24.

4. RELATIVE ENERGY CONSUMED IN STRETCHING

The element of energy dE consumed in stretching a rod an elemental
distance dX is given by the equation,

dE = F dX, (4.1)

where F is the applied force. By the definition of stress S as force.
per unit area and strain de as elongation per unit length, Equation
4.1 can be written as

I
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I1
dE (F/A) A X (dX/X) = V S do, (4.2)

where S EF/A, de dX/X and V = AX. (4.3)

Then, E/V = fSde.

For purposes of illustration, suppose that the jet from a
shaped charge is assumed to start from a right circular cylinder of some
initial length L and thai it continues to stretch uniformly until

it breaks up at some length Lf. From the definition of de Equation 4.3

can be written as
Lf

E/V = S (dX/X) S ln (Lf/L) (4.4)

f0fL

where S has been assumed to be a constant parameter during the stretching
process.

Suppose that a jet exists initially as a right circular cylinder
with a length to 4iameter ratio (L /D ) of unity. The volume V of the-

jet can be written as0

V=H/P D2 Lo/4 w L3/4, (4.5)

so that, using values for the mass M and density p from Tables I and II,
the initial length L0 is calculated as

LU = (4M/ivp) 1 / 3  1.67 cm. (4.6)

0%

Using Equations 5.24 and 4.4 and assuming that all the internal kinetic
ennrgy of the jet is used in stretching and that there is no jet
break-up,

2
U /24 (S/p) in (Lf/Lo) (J.7)

and

-f =L oEXP[pU /243]. (4.8)

14
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= 1.64 EXP[8.93 x 0 * 5000(24 2x 108)] (4,9)

20= 2.64 x 10 cm. (4.10)

This result, though perhaps unrealistic, illustrates that the internal
mechanical energy of a jet is sufficient to stretch it until it breaks.
If we had assumed a break up length of 50 cm, the work done, from
Equation 4.4, would have been

E/pV = (2 x 10 8/8.93 x 10 ) In (50/1.67) (4.11)

= 76.1 j/gm.

This is only about 7% of the available internal kinetic energy,
given from the last term of Equation 3.24 as

E/M = U 2/24 = 1042 j/gm. (4.12)

From Table II the specific heat of copper is 0.38 j/gm*C and the
heat cf f'lcion i4 207 j/gm, so thot the wnrk calculated in Equation 4.]1
is rather modest r-ompared to the energy require& to heat copper from
500"C, for example, and melt it. Since the stress S, assumed for the
foregoing calcuiations to be that of cold copper, is expected to
decrease markedly as copper approaches the melting point, there is
little likelihood that work done on a stretching jet will cause it to
melt if it was a solid at some time during the stretching process.

It will now be assumed, in agreement with observations, that the
stretching jet will break rather than stretch indefinitely. In
physical terms it can be said that there is apparently some threshold
of work by stretching which the jet can endure before it breaks up
into segments. Each segment has a velocity gradient U /L and will.
continue to stretch until it breaks further or telief waves propagate

from the free ends and the velocity gradient is removed. The energy
associated with the velocity gradient persists until it is expended
by work done in stretching. The energy available to stretch a segment
of length X is given from Equatioh'3.22 as

E w (M/24)U"/nS= (1/24) (MX/L) (Us/L)'i 2 , (4.13)

where n has been replaced by L/I and factors have been associated
to define the mass Mi/L of the segment and the velocity gradient Us/L.

is
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The internal energy per unit mass in the segment is then

2 2
E/M(Z/L) = (1/24)(U s/L)22 . (4.14)

Suppose, for example, that the first breaks occur at some energy
threshold (E/M). and that subsequent breaks occur if the segment

has enough relative energy to push the work done on the segment
beyond some upper limit (E/M)m

Equating the additional work needed for further break-up to the energy
available, as given by Equation 4.14, we obtain

(l/24)(Us/L)2z2 = (E/M)M - (E/M)o = AE. (4.15)

If we argue that the segment will not break further if

(1/24) (Us/L) 2 2 - AE, (4.16)

then the equation,

el- [24 (AE)/(U /L)2]1/2 '4.'7)

defines the longest segment that can exist without further break-up.
By means of Equation 4.4 and 4.15

AE= (S/p) In (L /Lo), (4.18)
m 0

where L is the length of the segment when break-up starts and L is
0o

its length when it has used all of its internal kinetic energy in
stretching, Equation 4.17 can be written with Equation 4.18 to yield

(24 (S~) in ( 1/2 (.i9
< [4 (/)In Lm/Lo)] /(J5/L) (A

Assumilug a 5% stretch (L/Lo = 1.0OS) and nominal values of strength

S, density p, and velocity gradient U /L from Tables I and II and

Figure 1, we find that

L < 1.62 cm (4.20)

Data, obtained by Jameson and exhibited in Figure 7, show an
estimated maximum length of 1.98 cm.

16
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One way of looking at the energy or time interval associated with
jet break-up is to balance the energy available for stretching a Jet
particle against the work done in stretching. For example, a particle
of length L, velocity gradient Us/L, and mass M will have available for

stretching at most the energy

E = (M/L)((U /L)2 (13 /24) (4.21)
S

as given by Equation 4.13. The energy per unit volume is therefore

Ep/[M(C/L)] = pj2(Us/L) 224 (4.221

If S is the strength of the material and the elongation Ae in time At
is given by the equation

Ae = AL/k = U (•/L) At/i, (4.23)
S

the work done per unit volume by stretching in time At is given from
Equation 4.2 as

dE/V = SAe = SU (,/L) At/io. (4.24)

If we equate the eneryv available to the work done in time At (Equations
4.22 and 4.24)

pUl (L/L) /24 SUs At/L (4.25)

and

At =U L(L/L) 2/24 S p(Us/L)i 2 /24 S. (4.26)

If we use the value of Z from Equation,4.20 we find that (4.27)

At = 4.88 x i0-6 sec.

From purely kinematic considerations using Equation 2.1

At = t (AL/L) 5 x 10.6 sec. (4.28)

17
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The time internal for At required for a relief wave to travel across a
1.62 cm segment is given by

At -/a a 1.67 x 10 2 /3750 a 4.4S x I06 sec. (4.29)

As will be shown later, this transit time for a relief wave is intimately
related to particle size distribution.

The point of the preceding discussion is that maximum particle
length (Equation 4.20) and relief wave speed (Equation 4.29) can be
consistently related by a simple stretching model, which includes work
done in stretching.

An interesting consequence of Equation 4.17 is that, if the amount
of work permissible by stretching becomes small in the time interval
between when break-up starts and when it ends, the jet will break into
very small pieces. The theory to support this initial conclusion will
be developed later.

It can be argued that the assumptions leading to Equation 4.20 and
its fair agreement with experiment are ad hoc and fortuitous. It will
be shown later that the same assumptions lead to a reasonable distri- )
bution in size for the fragments. Because of the square root and
logarithmic dependence of X on L /L , the result is not particularly

m o
sensitive to fairly large variations of L m/L0 . For example if L m/L°

had been 10, the result would have been 11.0 cm. This variation in
length from 1.62 to il cm represents a factor of 200 in the amounts of
stretch assumed.

The velocity gradient (or strain rate) U /L is probably the most

easily measured of the quantities in Equation 4.19. The density p is
not expected to vary greatly. The strength S, on the other hand, is
somewhat of a mystery because of the apparent tendency' of copper to
keep its strength better as the strain rate is increased, as shown in
Figure 2.

The preceding discussion can be summarized as follows. The jet
will either stretch.fore~et'(Equation 4.10) or it will break-,up. If
it breaks up and its time of break-up is determined by the amount of
work done in stretching it, there will be some threshold (of stretch,
time, or work) at which breakage begins.

18
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If breakage occurs, each segment has a velocity distribution and
therefore a kinetic energy relative to its center of mass, and this
kinetic energy must be consumed in further stretching of the segment.
If there are further potentially weak points in the segment, like the
ones which produced the segment in the first place, the segment will
subdivide further as more stretching is done. This process will
discontinue rather abruptly because of the sensitivity of the energy
available for stretching to the segment length (Equation 4.14). This
process can be modeled simply (Equation 4.19) to yield an estimate of
the upper limit for the length of the segments following break-up.

5. ELASTIC AND INELASTIC BEHAVIOR OF A LONG RIGHT CIRCULAR CYLINDER
WITH A LONGITUDINAL VELOCITY DISTRIBUTION

In order to better understand the behavior of a jet particle with
a velocity gradient and two free ends, it is useful to examine the
elastic response of a long right circular cylinder to a velocity gradient
as an initial condition. We can write the longitudinal displacement
y(X,t) from equilibrium at time t of a point located at a distance X
from the center of mass in terms of the Fourier series,

n 
)

y(Xt) = w b sin Enrat/L) + En] singnrX/L) + 6F-, n n nn=O

where L is the length of the cylinder, a is the speed of sound in thne
cylinder and bn, En , and 6n are constants determined by initial and r

boundary'conditions. We will assume that, at zero time, we have

ny (X,O) 0, -L/IXNL/2, (5.2)

y(x,o) = U X/L, = RX, -L/2IX4L/2, (5.3)

S

i.e. that the rod is initially unstretchedbut has a uniform velocity
gradient. The dot over the y indicates partial differentiation with
respect to time, U is the stretching velocity defined earlier, and

sU

R U /L (5.4)

is the strain rate.

20



The compatibility of Equations 5.1 and 5.2 requires that

n a 0. (5.5)

Differentiating Equation 5.1 with respect to time t and using Equation
5.5 gives the result,

n-•

s(Xht) u n (nT:a/L) bncos(nTac/L)sinE(nnX/L)+6n]n (5.6)
n=O

so that, from Equations 5.3 and 5.6,

n=rq

nO0 (nna/L)bnsinr(n~rX/L)+6n] RX (5.7)

The Fourier expansion for X in the range -L/2<X'L/2 can be written4

in the form,

22 )
X (4L/fr2 ) • [(-ln (2n-1) ]sin[(2n-l)7rX/L] (5.8)

n=1

Comparison of Equations 5.7 and 5.8 shows that it is possible To write
the coefficients of the series in the form

6 =0 (5.9)
n

2 3) _,n-I 3
b (4L R/wra) (-1)n/(2n-1) (5.10)

Using Equations 5.5, 5.9, and 5.10, Equation 1 can be written as

y(X,t) = [4L2 R/a] ' -)n-/(2n-1)3]sin[(2n'l)mat/L]sin
n=1

C(2n-l)irX/L] (5.11)

i IHandbook of Tables for Mathematics 4th Edition. The Chemical Rubber
Cor. 18901 Cranwood Parkway, Cleveland, Ohio 44123, pg.. 611. formula 7,
1964,

21
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The velocity and acceleration are computed from Equation 5.11 as

y(X,t) = (4LR/2 ) n =0 [(-1)nl /(2n-1) 2]cos[(2n-1)nat/L]sin
n=

[(2n-IJmX/L] (5.12)

and

n=o
y(X,t) = (4Ra/ ,) [[(-l)n/(2n-1)]sin[(2n-l)-nat/L]sin[(2n-l).rX/L] (5.13)

n=1

Since each element of the cylinder is accelerated according to
Newton's second law, we can write for the mass between X and X+dX the
equation, dT = pidX, where T is the tension i.n the cylinder and iý is the I!
mass per unit length, so that

fx~ f

dT=Ii y dx. (5.14)
L/2 L/2

Using Equat.on 5.13 and the fact that the tension at the end of the
cylinder is zero we have

Xd n=w

T(X,t) [4Rap/-n] dX 1 (-l)n/sin[(2n-1y7rat/LJsini(2n-l)rX/L]

"L/2 n=.

21 [(In'- 2
= [4RaPL/vr] ( [(-1)n/C2n-1) ]sin[(2n-1)iratLjcos[(2n-1)

n=l

l I (5.16)

IL/2

Using the fact that the cosine terms vanish when X=L/2 and the definitions

S - T/ur2 = stress (5.1.7)

p 4M/(nr 2L) (5.18)

22



SM/L (5L19)

where M is the mass of the cylinder and r is its radius, we have finally

S(X,t) [4RapL/'] ) o [(-1)n!(2n-1)2]sin[(2n-I)1Tat/L]cos[(2n-l)
n=l

-aX/L] (5.20)

On the basis of Equation 5.20 a number of conclusion3 may be drawn.

At small times, i.e. when

sin[(2n-l)Trat/L] [(2n-1)wat/L,), (5.21)

E-quation 5.20 'reduces to

n=W

S(X,t) = [4pRa/w 2] [(-1)nl/(2nn-l)](Ta/L)tcos[n2n-1)•X/L]. (5,22)
n=1

If we use the series identity,

v/4 =E[(-I) n+I /(2n-l)]cos[(2n-l)7X/L], (5.23)

Equation 5.22 reduces to

S(X,t) = (pRa 2 t) (5.24)

Equation 5.24 is an expression of our expectation that a uniform veiocity
gradient produces a uniform stretching until a relief wave can propagate
from the ends of the cylinder. The time required for the uniform
stretching to exceed the elastic limit of copper in our "standard jet"
is estimated from Equation 5.24 as

2
t , S/(pRa)

=O.16xlO6 sec. (5.25)

We see that the strain in a stretching jet is sufficient to insure plastic
flow from jet formation to break-up. Plastic flow reduces the velocity a
at which signals propagate so that what happens at one point in the jet
docs not communicate rapidly to'neighboring points. Therefore the jot
continues to stretch in a manner determined by the local velocity
gradient or strain rate.
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If the deformation of the cylinder were totally elastic, we would
expect maximum strain when every term in Equation 5.20 is positive or

uat/L = ff12, (5.26)

or
t = L/2a. (5.27)

This is the time for a sound wave to travel from the end to the center
of an elastic cylinder. In this case Equation 5.20 becomes

S(X,L/2a) = [4pRaL/- 2 ] , [i/(2n-l)2 (2n-l)X/L] (5,28)

n=1

We now use the fact that the Fourier series for [(L/2)-X] in the range
-L/2 <X<L/2 is given by

2 n=012
L/2-X = (4L/72) E [1/(2n-1) ]cos[(2n-l)7rX/L], (5.29)

n=l

so that Equation 5.28 becomes

S(X,L/2a) pRa[L/2 - X] (5.30)

This agrees with our boundary condition that the stress vanishes at the
ends and our expectation that the stress is a maximum at the center of
ýhe cylinder.

The preceding discussion of the jet as an elastic right circular
cylinder illustrates a number of points which are expected but which are
perhaps more believable if demonstrated by a standard mechanical analysis.
The tension along the jet is uniform (Equation 5.25)'until the elastic
limit is exceeded, and is expected to remain so until the jet begins to
break-up, if perturbations are expected to propagate poorly in the
plastically stretching jet. With a given velocity gradient, the maximumA. stress available (Equation 5.30) is proportional to the product of
length, velocity gradient, wave velqcity, and density. This agrees with

our earlier calculations, based on kinetic energy considerations, that
longer segments will stretch more because they have more energy per
unit mass (Equation 4.14). Since the tension is greatest at the middle
of the jet (Equation 5.30) a relieved segment (one that has lost its
velocity gradient) will be stretched more in the middle and-have a
tendency to be bigger at the ends, where stretching is least.
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If we assign a maximum stress level s, Equation 5.30 permits a
calculation of the distance d from the end at which this stress in exceeded
and plastic deformation begins:

d d (L/2-X) = S/pRa

8 3 4
W 2xl8/(8.93,10 .10 .3750) = 0.6mm (5.31)

This means that segments above about .mm will use almost all of their
kinetic energy, relative to the center of mass, in causing plastic
deformation.

As a matter of interest, whether or not it has physical reality in
the case of the actual jet, the relief wave starting from the free end
of the jet should cause the jet to stretch less in the region near the
end and hence insure that the tip particle will have the largest
diameter and will have a greater length than average.

If we imagine a jet to start as a right circular cylinder and to

break-up in 10-4 seconds with open spaces of one .cm roughly equal to the
length of the particlos, we can estimate crudely the magnitude of the
forces involved. The jet has roughly 0.6 gms/cm mass, and a mass of 0.3 gm
must move a distance of 0.25 cm on the average to vacate a space of 0.5 cm.
Using Newtons second Law, we derive the formula,

F = 2MS/t 2  (5.32)

where F is the average applied force which must be exerted to move a
mass m a distance X in time t. Using the above riumbers,

2.3x10-3 x0S02.1- 2 • 3

F = 20 (.0 ) = 300n .

The surface tension v of molten copper is 1.103 n/rm, so that its
contribution to the tension T in a jet of 3 mm diameter D is computed
to be

T = wDv = O.01n. . (5.341

This means that the surface tension is too small by a factor of 3xIO4

to produce the observed motion, and that the jet is unlikely to have
broken up because it was a liquid cylinder unstable under forces of
surface tension. On the other hand, the strength of copper is roughly

2x10 8 n/m 2 , so that the tension in the jet if it is a cold solid is

1.4x10 n. A 20% variation in this tension would be required to produce

the specified displacements in 10 secs, so 'that even a sizeable
instability might not be sufficient to produce the necessary action

unless it grew rapidly from the beginning.
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6. A SIMPLE STOCHASTIC MODEL FOR JET BREAK-UP

With the preceding theoretical framework it is now possible to
discuss jet break-up in a more quantitative fashion. It will be
assumed that the copper jet stretches as a solid until enough work is
done on it to cause it to break into pieces. The distribution in length
of the pieces will be determined by the energy available to stretch a
piece further after it is formed, the distribution cf weak points or
inhomogenities in the jet, and the properties of the material in general.

The first part of the determination is given by Equation 4.14,

EI[MCX1L)] = (1/24)(Usl/L)2& X61

which relates the specific kinetic energy relative to the center of mass
of a segment to the velocity gradient (U sL) and length L. We are

s
justified in keeping Equation 6.1 while the jet stretches and begins
to break-up because we have shown following Equation 4.11 that only about
7% of the jet energy is consumed in stretching and have argued that the
jet stretches uniformly with little communication up and down the jet
because of the rapid rate of plastic deformation.

The second part of the determination, namely the distribution of weak
points in a jet, is something easy to believe but difficult to demonstrate,
other than by noting that the jet does break-up into a somewhat irregular
pattern.

Referring to Figure 3, suppose that the probability, that any
segment of length AX will break during the time interval between t
and t+At, is given by the expression,

P(t) AX AE = B(t) AX AE, (6.2)

where AE is the work done on the segment by stretching. The assumptions
contained in this equation are (1) that the probability of a weak point
being in the segment is proportional to its length and (2) that the
probability of its breaking is proportional to the work done on it by
stretching.

Since work proceeds as a function of time as the jet stretches, Equation
6.2 can be written in the more convenient form,

p(t) AX At b(t) AX At, (6.3')

where

H tmttm (6.4)
Here t is the time when break-up starts and t is the time when it ends.
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9 1

BREAK AT BREAK AT
ti t2

Figure 3. Calculation of the probability that n segments of total
length L will hold together. Breaks are postulated for
segments i and n, and the probability that no other breaks
occur before a relief wave arrives is calculated.
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The inclusion of the limits on the time t reflects the experimental
observation that, in stretching a number of like samples of copper, the
elongations at which breaks occur are bunched between upper and lower
limits which are rather loosely spaced. Between these limits, the work
done is roughly proportional to the elapsed time At. The parameter b(t)
is characterized by the material and its condition at time t.

Suppose that the time interval between t0 and t. is divided into
M equal intervals of length Lt and that the jet is also divided into
imaginary segments. The probability Pk that the ith segment of length
(AX)i will surive the Kth time interval (At) K without a break is given
from Equation 6.3 as

Pik -1 b(t) (AX)i (At)K, (6.5)

i~e. the' survival probability Pkis unit), minus the probability of a

break, given by Equation 6.3.

The total survival probability of. the segment is the product of all
the individual survival prebabilities, i.e.,

Pi(t) II [l-b(t)(AX)i(At)K] (6.6)

K=1

Taking the logarithm of both sides yields the result,

£n pi(t) K R n[l"b(t)(At)i(At)K] (6.7)
K=I ,

Since

Lim .tn (l-y) -y. (6.8)

and the products b(t) (AX) i(At)K will become arbitrarily small as (AX)i

and (At)K app-c..ch zero, it is a good approximation to write

K=M
In Pi(t) = - • b(t)(AX)i(At)K, (6 9)K=I

The identification, 1Kl

K-M .t

E b(t)CAt} Kb(t)dt, (6.10)
*1 0*, O
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I
permits Equation 6.9 to be written as

9n pl(t) - -(AX)i b(t)dt (6.11)

o
0

Equation 6.11 is a statement of the probability that the ith segment
of length (AX). will survive if a relief wave arrives at time ti. It

is assumed that the process of jet break-up is as shown in Figure 4
and that a segment is subject to breakage until it is relieved by a
relief wave propagating from a nearby break.

In a like manner it can be stated that, if a rod of length L is

to survive until time tm, each sub-element (AX)i must be relieved

before that time. Suppose that the rod is divided into n segments of
equal length, as shown in Figure 3, and that the rod is formed by a
break on the left at time tI and a break on the right at time t 2.

Suppose that a relief wave travels from the left break with a speed
U(X) and arrives at the ith segment at time ti. The survival probability

of the ith segment is given from Equation 6.11 as

Pi(ti) = EXP[-(AX) b(t)dt (6.12)

it
0

where

ti = Il÷ dX/U(X). (6.1-1)

The distance Xi is measured from the left end of the rod to the ith
1

segment, and U(X) is the speed at which the relief wave travels from
the left break. The integral in Equation 6.13 is just the time
required for the relief wave to travel from the left break to the ith
segment. In general, the relief waves from the right and left will
meet at some time tu and at some point X12 such that

14 12 12

t tdX/X) 2 dX-/U(X-), (6.14)

0o L.

where

N L (6.15)
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V 1M

1 4 3 2

d S 2

1 4 3 2

Figure 4. Break tip of a jet. Break points are numbered. Relieved
areas are shown by cross hatch. Fach segment continues
to stretch until it is either tbroken or relieved by a
relief wave traveling from a free end.
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From the above considerations and reference to Figure 3, the
probability thAt a break will occur on the left between the times t
and t 1 + (At) 1 and on the right between the times t 2 and t 2 + (At) 2

and that the intervening segments will survive until reached by a
relief wave, after which they are sure to survive, can be written as

P(L't 1 't 2) At)l(At) 2 = I Pj PK b(tl)(b(t 2)(At)l(At)2 (6.16)

In the above expression, b(t 1 )(At) 1 is the probability per unit length that

the first segment will break between the time t1 and t1 + (At), and

b(t 2 )(At) 2 is the probability per unit length that the last segment will

break between the times t 2 and t 2 + (At) 2. For Equation 6.16 to be a

true probability equation, it should be multiplied on both sides by

(AX) 1 (AX) 2 to include the lengths of the segments where the breaks

occur, However, because only a relative probability is sought and
because the location of the breaks is immaterial to the extent that
any other two breaks separated by the same distance would yield the
same results, the factor (AX)I(AX) 2 is ignored to save writing and

space. The first product,

.Fpj, (6.17)

is the probability that the left part of the rod of length L, defined
by

lytx<xl2, (6.18)

will survive, and the second product is the probability that the
right part will survive, Total survival probability is the product
of the survival probabilities of the individual parts.

For convenience of analysis, the left hand side defined by Equation

.6.18 is divided into M equal segments of length AX and the right hand
side is divided into n equal segments y length AX so that

(M+n)AX L (6.19)
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From Equations 6.12 and 6.13,

Pj = EXPE-AX b(t)dt]; (6.20)
ft

0

tK

P EXPL-AX b(t)dt]; (6.21)
0

(X
t t +1 dy/U(y) = t + ; (6.22)

S- tdy'/U(y') t 2 + f(L-XK). (6.23)

By way of explanation, Equation 6.20 states the survival probability
of the jth segment relieved from the left by a relief wave starting some
.-ime between tI and t1 + (At) 1 and arriving at time t.Y Equation 6.21

computes tj in terms of the initiation of the relief wave at time t 1

and its travel time to the jth segment located at X.. Combining

Equations 6.16-6.23 and taking the logarithm gives the result,

Ln P(L,tlpt 2 ) = n[b(t )b(t2)]- AX b(t)dt - AX 6O b(t)dt. (6.24)

In the limit as AX becomes arbitrarily small

j, agMS; ýj12 /(tiox)

AX b(t)dt - dX b(t)dt, etc, (6.25)

0 0 0

so that Equation 6.24 can finally be written as

Pn P(L,,t1 t 2) L £n[b(tl)b(t 2 )Jf dX f:(tl:X t)dt-X~i •0 (6.26)

i 2 X f (t2'X)
dX b~t) dt

f to
0 0
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The integration for the left side extends from time to, whenbreaks

can begin, to the time t(tlX) when the relief wave arrives, where

from Equation 6.22

t(t],X) t 1 e dy/U(y). (6.27)

Likewise,
L-X

t(t2  2 + dy'/U(y). (6.28)

The integration over X, for example, continues from the left end to
the point X1 2 where the relief waves meet. Equation 6.14 determines.

the meeting point. Finally

P(L) f ffdtI dt2 P(L,tlt2) (6.29)

To exercise this theoretical structure, it is worthwhile to make the
simplest possible assumptions, namely that

b(t) = b, (6.30)

where b is a constant and that relief waves travel with a constant speed
a, i.e.

U(X) a. (6.31)

Equation 6.14 then becomes

+X 12  fL'l2 12

tu t 1 dX/a U t 2  dX/a (6.32)

+t ÷ X12/a =t 2 + (L-X 1 2)/a (6.33)

so that

X [a(t 2 - tl) + LQ/2. (6.34)
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From Equations 6.27 and 6.28,

t(t 1 ,X) t 1 + X/a; (6.35)

t(t 2 ,X) t 2 + (L-X)/a. (6.36)

With these definitions the integrals of Equation 6.26 can be written
as

J0dX b(t)dt b J t + X/a - to]dX
t0•

= b [(t 1 -to)X1 2 + X 2 /2a] (6.37)

and

dX J b(t)dt = b [tI+X'/a-to]dX"
J0 t 0

0

= b [(t2-to)(L-X1 2 ) + (L-X1 2 ) 2 /2a] (6.38)

After some simplification and the use of Equation 6.34, the sum of
these integrals can be written as

(ba/4) [2T(X+y) - (y-X)2 + T21] (6.39) "

where

X t -to; (6.40)

y E t 2 -to; (6.41)

T L/a. (6.42)

Equation 6.29 can now be written in the form,

P(L) b~fdX dy PXPI-(ba/4)r2T(X~y)-(y-X) +T~ (6.43)
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A number of conditions must be met for the limits of integration
indicated in Equation 6.43. Since the break-up occurs between to and
t m

t <t <~tm P Ot - t o•t (6.44)
01I m no

to~t2<tm , 0<),<tm-to~t (6.45)

Because all the rod of length L must be relieved before time t

t<t (6.46)

Fron Equation 6.33 it can be shown that

tu = [L/a+t +t2]/2, (6.47)

so that, from Equations 6.46 and 6.47 )

L/a + t1 + t 2<2tm, T + X + y<2T. (6.48)

Finally, the breaks at times t and t 2 must be such that a relief wave1 2

from one does not arrive in time to prevent the other, i.e.

Itl-tl!<L/a , !X-yl4M a 6 .49 )

These conditions have been plotted in Figures S and 6 for t1 and t 2 .
Since there is symmetry with respect to which break occurs first, the
arbitrary condition

t 2(tI (6.50)

was added to reduce the range of integration.
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ASSUMPTIONI ~Llm u5 .

tm !15
"to •11

15
to, 2 tm. to.• t•a2

t2 •_to "
t2 10 -to to)X

L/a'

4r,

0 5 10 15
ti

Figure S. Graphical representation of the conditions of Eqx 6.44-6.50
for I•a(t -to). The cross hatched area meets all the
conditions.
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L/a a3
tm a 1

t all

2m

t2  to t
10

5K

0-
0 5 10 15

Figure 6. Graphical representati.on of the conditions of Equations 6,44-6.50
for LKa(t -t ). The cross hatched area meets aill the conditions.

M .0

37i
An



Unfortunately, the integral of Equation 6.43 cannot be expressed
in simple terms. However, an upper limit can be assigned by noting
that the exponential is always less than unity so that

P(L).b 2A(L), (6.51)

where A(L) is just the area over which the integration is to be performed.
By inspection of Figure 5 it is seen that the area of integration for
La(t -.t ) is one fourth of the square with edge of length [2(t-to) -

L/a]. Therefore

A(L) = (1/4)[2(t m-t )-L/al2. (6.52)

In Figure 6, the area of integration is seen to be a trapezoid with
altitude V2L/2a and bases4l(tm-,L/2a-to) and /2(t -L/a-t ). Therefore

A(L) (1/2)(B I+B2)h = (t.-to•L/a -3L 2 /2 (6.53)

Combining Equations 6.52 and 6.53 gives the result,

A(L) = (t -t )(L/a)-3L 2/4a , ONL~a(t -t.) (6.54)
m 0 m o

(1/4)[2(t m-t )-L/a] ' a(t-t °)<L42a(t m-t ).

It is seen that A(L) has a maximum at

L = 2a(t -t )/3 (6.55) •,
in o

and that A(L) meets the requirements that

A(O) - A[2a(t m- t)0A 0, (6.56)

"as well as the requirement for continuity at A~a(tm-to)A.

r oe maximum for P(L) should lie to the left of the maximumfor b A(L) because of the increasing influence of the einponential for

larger values oEL.

38 .3

b • ,- - A



An experimental plot of P(L) is shown in Figure 7. A graph of A
versus L is shown in Figure 8. From Equation 6.56, if the maximum
permissible length is determined from Figure 7 to be 3.8 cm and if the
relief velocity is assumed to be 3750 m/sec,

2 a(tm-to) = Lmax (6.57)

-2 -6tm-t = 3.8.10- /(2X3750) = SX10- sec. (6.58)

The ratio of maximum length tp most probable length is roughly 3 from
the experimental data and is also 3 from Equations 6.54 and 6.55.

The shape, of the theoretical curve is not very good.for small
values of L, possibly because-of the variation of a with distance
from the break. The relief speed a is probably near 3750-m/sec.at
the break but less as the energy dissipation required of the relief
process is increased, according to Equation 4.14.

T'he limits of integration for Equation 6.29 can be determined from
Figures 5 and 6 by inspection. From Figure 5, for Loa(t m-t ),

tl<t 42,, -t-L/a; (6.59).
12 m

to<to<t•mL/2a. (6.60)

From Figure 6, for 0Qtfa(tm".to) and to<tI tm-L/a,

t 4t24L/a + t; (6.61) i

t <t <tmL/a. (6.62)
0 1 M

From Figure 6, for OL~a(t.-t ) and t,-L/a~tl1t-L/2&,

t I t 2t <2tm -t I'L/a: (6.63)

t a-_L/04t I t m-L/2a. (6.64)

SRobert L. Jameson of the Ballistic Research Laboratory, private
communication, Nov 1977
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These limits can be changed to suit Equation 6.43 by the substitutions
of Equations 6.40-6.42.

For T~tt-t (6.65)

X<y<2t-X-T, (6.66)

O.Xt-T/2. (6.67)

For T~t-

Xy<'+X, (6.68)

O<X~t-T; (6.69)

X<>y<2t-X-T; (6.70)

t-T<X~t-T/2. (6.71)

With these limits, Equation 6.43 may be written more explicitly as

~t-T ~ t-T/2 2t -X-T
P(T) J dX ) I'(X,y)dy + dXf F(X,y)dy (6.72)

when 0-I<t and as

t-T/2 2t-X-T
PC1T) dX F(X,y)dy (6.73)

when t-IC2t, where

,(X,y) EXP {-ba(T(X+y)/2 'r2/4 - (X-y)Y4]}" (6.74)
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7. FURTHER CONSIDERATION OF JFT BREAK-UP

It may seem reasonable from a physica: viewpoint to remove the
time restrictions on the onset and completion of jet break-up. Experience
with pulling copper seems to justify the assignment of a narrow range
between the strain nece3sary to start breakage in a collection of samples
and the strain sufficient to insure breakage in every sample. Experimentally,
there arc no sampies which do not bzeak, and it is not rea3onable to
expect that a segment of a jet will be arbitrarily long after jet
break-up and relief of the individual segments.

The process by which a segment, with a velocity gradient and twofree ends, relieves itself is not well. understood. If it is assumed,

as shown in Figure 9, that the fragment of length L is relieved from
the left end to the point X, which has a speed RX, the hinetic energy
E for the relieved part can be written as

RI

ER (M/2L)(L/2-X)R X (7.1)

The kinetic energy E of the unrelieved part is expressed as
U

s223
Eu = (NI/2L) R2 xdX = (M/6L)R 2 X5 (7.2)UI

The total energy E of the left half of the segment is therefore given
by the equation,

2 2 2 3
E - ERE+Eu = MR2X2/4-MR2X3/3L. (7.3)

Ru.

It will be assum,.,,d that this energy is removed by stretching of the
inrelieved portion of the segment. The rate P at which work is done
in stretching the unrelieved portion is

Ii P = TRX (7.4)-

where T is the tension at the interface between the relieved and
unrelieved.regions and RX is the velocity of the material at the inter-,
face. In an instant of time dt, the work done dE can be written as

dE = Pdt = TRXdt. (7.5)
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L/ 2 - X L...... .X ... /2

dx

Figure 9. Hypoth sized relief of a segment with an initial speed
distribution U(X) a RX. The left portion of the segment,
of length L/2-X, has been relieved by a wave located at

XeU
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The energy loss by the segment is jiven by

(lDE/.aX)dX = (MR2 X/2-MR'X 2/L)dX dU (7.6)

where E is given by Equation 7.3 and dX is the amount the interface
moves in time dt. Equating tho results of Equations 7.5 and 7.6
gives the equation,

dX (TRX)/(MR2X/22MR2X2/Q (7,7)

= SAL/(?4RL/2-MRX) - (S/pR)(L/2-X) (7.8)

where the tension T has been written in terms of the stress S and
thi cross seztion C of the segment as SC and the density p has boondefined as M1/LC.

If' the defination,

V= (L/2 - X (7.9)

is made, Equation 7.8 becomes

dX/dt S/oRX=-I/(AX') (7.Ii)

This is the speed which the interface (relief wave) must move to
consume the available energy If the segment is relioved as hypothesized
in Figure 9, where XV is the distance from thG left of the segment.

Following the pattern of Section 6, it is seen that the time for
the relief wave to arrive at a point X from the end is given by

ix

t(tl.X) 3t W dX/t(X) W W AXdX t + AX/2(7.1)

1 Likewise,

* I t(t 2 ,X1 V t 2 ÷ Ax' /2. (7.12)

The waves meet at a time tu and place X1 2 such that'

t 1  AX1 2 /2 t t 2 + A(L:X1:2 )2 /2 ,t (7.13)
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so that

X - (t 2 -tl)/(AL) + L/2

and.
tu (t 1.t 2 )/2 + (t 2 -tl) /(2AL2) + AL /8, (7.14)

Proceeding as before the integrals of Equation 6.26 can be written as

SX12  t(tl'X) L-X( 12 d t(t2'X)

5I = dX d b dt, (7.15)I o d t d t + b f ot

0 0

or more explicitly as

I =b {(tl-to)X1 2 + (A/6)X 1 • + (t 2 -to)(L-Xl 2 )+ (A/6)(L-XI 2 )2 } (7.16)

This reduces to the expression,

I - b[(Xty)L/2 4 AL3 /24 - (y-X) 2 /2AL) (7.17)

where as before

X et-to* (7.18)

~0
y = -t2 t (7.19)

t t t r-t. (7.20) '
The integration of EXP(-I) over the variables tI and t 2 is subject

to several restrictions of the same kind as before, namely,

to0tltm , OK, (7.21)

t o4t 2 4t m %yet, (7.22)

. 2 t L2/2, y-X 2L/2=T/2,' (7.23)
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2 2 2tm>t * (tl +t 2 )/2 + (t 2 -t 1 ) /(2AL ) + AL /81 (7.24

2t>(X+y) + (X-y) 2 /T + T/4. (7.25)

Using the definition
T AL2 (7.26)

Equation 7.17 can be written as

I - (bLT/2) [(X+y)/T + 1/12-(y-X) 2/T2] (7.27)

Equation 6.39 can be written for the constant relief velocity as

2 22I w (baT /4) [2(X+y)/T + I -. (y-X IT'] (7.28)

These functions (Equations 7.27 and 7.28) are somewhat similar in
appearance but in one, Equation 7.27, T is defined as AL2 whereas
in Equation 7.28 it is defined as L/a. This means that longer segments
are discriminated against when the relief wave speed varies as 1/AX.
Small segments are also discrimminated against because the relief is
very rapid near a break so that the next break is more likely to be
distant. Thus the 1/AX assumption for the relief wave speed should
result in a more narrow distribution than the assumption of a constant
relief wave speed.

To illustrate the above points more specifically, from conditions
described by Equations 6.47 and 6.48 and examination of Figure 6, it
is noted that, as L approaches zero, the trapezoid, which represents
the area over which the tI and t 2 integrations take placp, approaches
a height of L/(/Ia) and a length 42(t-L/a). Therefore as L approaches
zero .

Area - Lt/a (7.29)

This behavior at small L is exhibited by the curve of Figure 8 near the
origin.

On the other hand, for the 1i/AX hypothesis for the relief wave velocity,
the condition of Equation 7.23 indicates that t~he arta of integration,
corresponding to that of Figure 6, has a width of ALV/2. The length
of the area, from Equation 7 . 24 A in the limit as t' and t 2 are equal

mad approach tn, is V7 (t-AL2/8). In the limit as L goes to zero r
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Area - AL2 / V'. (7.30)

This behavior is characteristic of the experimental curve of Figure 7
near the origin. The hypothesis of a 1/AU relief velocity appears
to yield a theoretical curve which is reasonable in shape near the
origin and at large values of L, but the exact form of the curve is
not known without evaluating the integral of EXP(-I), given by Equation
7.16 for various combinations of the parameters b, A, and t.

8. CONCLUSIONS

A simple physical modei has been developed to explain jet break-up.
It gives a fairly good description of the upper limit for particle
length after break-up and predicts particle distribution with respect
to length in a relative way. The model, unfortunately, makes use of
material parameters which are not readily observable, such as the
strength of a stretching jet, the limit to which the material can be
worked by stretching without-breaking, and the speed of a relief wave
originating' at the free end of a segment. It is probable that any model
would have the same problem, because these parameters are fairly )
fundamental.

Some obvious suggestions for improving jeta arise from the study.
If the size of particles has an upper bound associated with the
development of breaks at propitious times and places, why not design
the jet to be weak at intervals whose distance is slightly less than
the maximum permissible length? The jet could then consist of particles
all of which are near maximum permissible length.

The time between onset and completion'of jet break-up is estimated *

to be SxlO6 seconds, and is inversely proportional to the speed of the
relief wave propagating from a break. This corresponds to a strain of
roughly 5% between onset and completion of break-up for the jet under
study.

If the jet must break rather than stretch indefinitely, a more
uniform jet will break into smaller pieces than alosi uniform jet.
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